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Figure 1: Coordinates of the wire, test anti-proton and proton bunch. Current in the wire is directed out
of the plane of the paper.

1 Ideal Compensation (1)

We consider the opposing proton beam to be round in this section. If the coordinates of the proton
centroid are (xP0, yP0) and the coordinates of the test anti-proton particle are (xA, yA), the beam-beam
kicks experienced by the anti-proton are

∆x′ = −2Nprp
γp

xP0 − xA

[(xP0 − xA)2 + (yP0 − yA)2]

{

1 − exp[− 1

2σ2
[(xP0 − xA)2 + (yP0 − yA)2]]

}

(1)

∆y′ = −2Nprp
γp

yP0 − yA

[(xP0 − xA)2 + (yP0 − yA)2]

{

1 − exp[− 1

2σ2
[(xP0 − xA)2 + (yP0 − yA)2]]

}

(2)

CHECK SIGNS

If the two beams are sufficiently far away that the argument of the exponential is � 1, then the exponential
term has a negligible contribution and only the first term in { } need be kept.

Now consider the field and forces due to a wire on the test anti-proton. For an infinitely long wire,
the magnetic field is azimuthally directed and at a distance r from the wire is given by

Bθ =
µ0

2π

IW
r

(3)

where IW is the current in the wire.
From Figure 1 it follows that the components of the field are

Bx = |B| sinβ =
µ0

2π

yW − yA

r2
IW , By = −|B| cosβ =

µ0

2π

xW − xA

r2
IW (4)

Here
r2 = (xW − xA)2 + (yW − yA)2

Assuming that the force due to the wire can be lumped in the middle of the wire and considered as that
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due to an impulsive force, the change in slopes of the anti-proton are

∆x′ = −ByL

(Bρ)
=
µ0

2π

IW
(Bρ)

xW − xA

(xW − xA)2 + (yW − yA)2
(5)

∆y′ =
BxL

(Bρ)
=
µ0

2π

IW
(Bρ)

yW − yA

(xW − xA)2 + (yW − yA)2
(6)

Convert to Floquet coordinates

X =
x

βx
, PX =

βxx
′ + αxx√
βx

Y =
y

βy
, PY =

βyy
′ + αyy
√

βy

(7)

If the motion between points 1 and 2 is purely linear, then the transformation between the Floquet
coordinates between these two points is









X
PX

Y
PY









2

=

[

R(ψx) 0
0 R(ψy)

]









X
PX

Y
PY









1

(8)

where R(ψ) is the 2 × 2 rotation matrix.
The impulsive kicks in Floquet coordinates are given by

∆PX =
√

βx∆x′ , ∆PY =
√

βy∆y′

The beta functions that will be used are those on the pbar helix, even when scaling the coordinates of
the proton bunch. Thus

XP0 =
xP0

√

βx(p̄)
, XA =

xA
√

βx(p̄)

YP0 =
yP0

√

βy(p̄)
, YA =

yA
√

βy(p̄)
(9)

Defining the constants

Cb =
2Nprp
γp

, CW =
µ0

2π

IWL

(Bρ)
(10)

the kicks due to the round beam-beam interaction and the wire can be written as

∆PX,b ' −Cb
βx,b(XP0,b −XA,b)

[βx,b(XP0,b −XA,b)2 + βy,b(YP0,b − YA,b)2]

∆PY,b ' −Cb
βy,b(YP0,b − YA,b)

[βx,b(XP0,b −XA,b)2 + βy,b(YP0,b − YA,b)2]
(11)

∆PX,W = CW
βx,W (XW −XA,W )

βx,W (XW −XA,W )2 + βy,W (YW − YA,W )2

∆PY,W = CW
βy,W (YW − YA,W )

βx,W (XW −XA,W )2 + βy,W (YW − YA,W )2
(12)

where (βx,b, βy,b), (XP0,b, YP0,b, XA,b, YA,b) are the beta functions on the pbar helix and coordinates at
the beam-beam interaction while (βx,W , βy,W ), (XW , YW , XA,W , YA,W ) are the beta functions also on the
pbar helix and coordinates of the wire and test pbar particle at the wire location.
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Figure 2: Phase space point following a beam-beam kick, phase rotation and followed by a wire.

1.1 One beam-beam kick

Let ~Z = [X,PX , Y, PY ]T denote the phase space vector in Floquet space. In this model where there is
only linear motion between the beam-beam kick and the wire, the phase space vector is

~Zf = KW �R(ψx, ψy) �Kb � ~Zi (13)

Principle of Compensation: The wire should restore the phase space trajectory to the point reached
in the absence of the beam-beam interaction and the wire. In other words, the phase point after the wire
is the same as though the motion were completely linear.

This requires
KW �R(ψx, ψy) �Kb � ~Zi = R(ψx, ψy) � ~Zi (14)

or equivalently

sinψx∆PX,b = 0 (15)

cosψx∆PX,b + ∆PX,W = 0 (16)

sinψy∆PY,b = 0 (17)

cosψy∆PY,b + ∆PY,W = 0 (18)

Equations (15) and (17) determine the phase at which the wire should be placed. It is obvious that since
the wire changes only the momenta but not the instantaneous positions, the phases should be chosen so
that the positions have the values that they would in the absence of the kicks. Indeed we find

ψx = mxπ, ψy = myπ (19)

The other two equations (16) and (18) determine the wire parameters (current and positions) so that the
momenta are also returned to their original values.In general, this compensation only works for a specified

test anti-proton. Suppose we choose this compensation to be effective on the centroid of the anti-protons
with coordinates (XA0, PX,A0, YA0, PY,A0).

We have

βx,W (XW −XA,W )

βx,W (XW −XA,W )2 + βy,W (YW − YA,W )2
= − cosψx

∆PX,b(A0)

CW
≡ CX,A0 (20)

βy,W (YW − YA,W )

βx,W (XW −XA,W )2 + βy,W (YW − YA,W )2
= − cosψy

∆PY,b(A0)

CW
≡ CY,A0 (21)

These have the solutions for the wire positions (XW , YW )

XW −XA0,W =
βy,WCX,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

, YW − YA0,W =
βx,WCY,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

(22)
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This fixes the wire position in terms of the beam-beam kicks experienced by the bunch centroid. It places
no restriction as yet on the wire current or other optics constraints at the location of the wire.

The condition that the compensation works for any other particle with Floquet coordinates (XA, YA)
in the anti-proton bunch is

XW −XA,W =
βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

, YW − YA,W =
βx,WCY,A

βy,WC2
X,A + βx,WC2

Y,A

(23)

where the position of the wire (XW , YW ) is determined by Equation (22). We can write for example

XW −XA,W = XW −XA0,W − (XA,W −XA0,W )

=
βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

+ +

{

βy,WCX,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

− βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

− (XA,W −XA0,W )

}

The terms in { } must vanish for exact compensation or

βy,WCX,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

− βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

= XA,W −XA0,W = cos(ψx)[XA,b −XA0,b] (24)

Writing

∆XA = XP0,b −XA,b, ∆YA = YP0,b − YA,b, ∆R2
A = βx,b∆X

2
A + βy,b∆Y

2
A, Cr =

Cb

CW

we have

βy,WCX,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

− βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

=
cosψx∆XA0∆R

2
A0

Cr[βx,b∆X2
A0 + (β2

y,b/βx,b)(βx,W /βy,W )∆Y 2
A0]

− cosψx∆XA∆R2
A

Cr[βx,b∆X2
A + (β2

y,b/βx,b)(βx,W /βy,W )∆Y 2
A]

where we have used the fact that cos2 ψx = 1 = cos2 ψy. If βy,W /βx,W = βy,b/βx,b, then

βy,WCX,A0

βy,WC2
X,A0 + βx,WC2

Y,A0

− βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

=
1

Cr cosψx
[XA,b −XA0,b] (25)

and the equality to be satisfied is

1

Cr cosψx
[XA,b −XA0,b] = XA,W −XA0,W = cos(ψx)[XA,b −XA0,b] (26)

This is true if Cr ≡ Cb/CW = 1. The same condition is obtained by requiring that the compensation is
exact in the vertical plane for all particles. Hence the two conditions for the compensation to be exact for

all particles are

βy,W

βx,W
=

βy,b

βx,b
(27)

2Nprp
γp

=
µ0

2π

IWL

(Bρ)
(28)

The first condition requires that in addition to the phase advance to the wire being a multiple of π,
the beta functions have to be in the same ratio as at the beam-beam interaction. The second condition
determines the integrated wire strength in terms of the bunch current.
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1.2 Two beam-beam interactions compensated by a single wire

Consider for simplicity that two beam-beam interactions will be compensated by a single wire. The phase
advances between the successive beam-beam kicks are (ψx,1, ψy,1) and the phase advances from the 2nd
beam-beam kick to the wire are (ψx,2, ψy,2).

Applying the same principle of compensation that the wire should restore the phase space point back
to the circle after the wire, the compensation condition is

KW �R(ψx,2, ψy,2) �Kb2 �R(ψx,1, ψy,1) �Kb1
~Zi = R(

∑

ψx,
∑

ψy) � ~Zi (29)

or equivalently

sin
∑

ψx∆PX,b1 + sinψx,2∆PX,b2 = 0 (30)

cos
∑

ψx∆PX,b1 + cosψx,2∆PX,b2 + ∆PX,W = 0 (31)

sin
∑

ψy∆PY,b1 + sinψy,2∆PY,b2 = 0 (32)

cos
∑

ψy∆PY,b1 + cosψy,2∆PY,b2 + ∆PY,W = 0 (33)

Solving for the phases (ψx,2, ψy,2) to the wire, we find

tanψx,2 = − sinψx,1

[cosψx,1 + ∆Px,b2/∆Px,b1]
(34)

tanψy,2 = − sinψy,1

[cosψy,1 + ∆Py,b2/∆Py,b1]
(35)

It is no longer necessary that the phase advance from the first beam-beam kick to the wire be a multiple
of π.

If we define

Cx ≡ Cb1

CW

cos
∑

ψxβx,b1∆XA,b1

[βx,b1∆X2
A,b1 + βy,b1∆Y 2

A,b1]
+
Cb2

CW

cosψx,2βx,b2∆XA,b2

[βx,b2∆X2
A,b2 + βy,b2∆Y 2

A,b2]

Cy ≡ Cb1

CW

cos
∑

ψyβy,b1∆XA,b1

[βx,b1∆X2
A,b1 + βy,b1∆Y 2

A,b1]
+
Cb2

CW

cosψy,2βy,b2∆YA,b2

[βx,b2∆X2
A,b2 + βy,b2∆Y 2

A,b2]

then the position of the wire required to compensate the kicks on the chosen anti-proton is given by a
similar expression as for a single beam-beam kick

XW −XA,W =
βy,WCX,A

βy,WC2
X,A + βx,WC2

Y,A

, YW − YA,W =
βx,WCY,A

βy,WC2
X,A + βx,WC2

Y,A

(36)

This only guarantees that the beam-beam kicks will be compensated for the chosen anti-proton. The
conditions for the compensation to work for all anti-protons are much more complicated than with the
single beam-beam interaction.

Comments: From the messy algebra, it doesn’t look likely that the beam-beam kicks can

be compensated for all particles. Prove or disprove this.

1.3 Several beam-beam interactions compensated by a single wire

The generalization to N kicks followed by a single wire is straightforward. The phase advances to the
wire (ψx,N , ψy,N) from the N ’th beam-beam kick are given by

tanψx,N = − sin[
∑N−1

i=1 ψx,i]∆PX,1 + sin[
∑N−1

i=2 ψx,i]∆PX,2 + . . .+ sin[ψX,N−1]∆PX,N−1
[

cos[
∑N−1

i=1 ψx,i]∆PX,1 + cos[
∑N−1

i=2 ψx,i]∆PX,2 + . . .+ cos[ψx,N−1]∆PX,N−1 + ∆PX,N

](37)

tanψy,N = − sin[
∑N−1

i=1 ψy,i]∆PY,1 + sin[
∑N−1

i=2 ψy,i]∆PY,2 + . . .+ sin[ψY,N−1]∆PY,N−1
[

cos[
∑N−1

i=1 ψy,i]∆PY,1 + cos[
∑N−1

i=2 ψy,i]∆PY,2 + . . .+ cos[ψy,N−1]∆PY,N−1 + ∆PY,N

](38)
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The coefficients Cx, Cy are defined as

Cx =
Cb1

CW

cos[
∑N

i=1 ψx,i]βx,b1∆XA,b1

[βx,b1∆X2
A,b1 + βy,b1∆Y 2

A,b1]
+
Cb2

CW

cos[
∑N

i=2 ψx,i]βx,b2∆XA,b2

[βx,b2∆X2
A,b2 + βy,b2∆Y 2

A,b2]
+ . . .

+
CbN

CW

cos[ψx,N ]βx,bN∆XA,bN

[βx,bN∆X2
A,bN + βy,bN∆Y 2

A,bN ]
(39)

Cy =
Cb1

CW

cos[
∑N

i=1 ψy,i]βy,b1∆YA,b1

[βx,b1∆X2
A,b1 + βy,b1∆Y 2

A,b1]
+
Cb2

CW

cos[
∑N

i=2 ψy,i]βy,b2∆YA,b2

[βx,b2∆X2
A,b2 + βy,b2∆Y 2

A,b2]
+ . . .

+
CbN

CW

cos[ψy,N ]βy,bN∆YA,bN

[βx,bN∆X2
A,bN + βy,bN∆Y 2

A,bN ]
(40)

The solutions for the wire position are then those given in Equation (36).
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